Večino meritev za napovedovanje vremena zberemo ob pomoči umetnih satelitov, ki krožijo okoli Zemlje.

A tu se stvari šele začnejo: zbrane podatke je treba vključiti v računalniški model, kritično ovrednotiti rezultate računanja z velikimi računalniškimi gručami in šele nekje čisto na koncu tudi povzeti v vsem razumljiv jezik.

Današnja meteorologija je torej tesno povezana z vesoljsko tehnologijo in naprednim računalništvom.

Velik del vsakdanjega poganjanja računalniških gruč na fakulteti za matematiko in fiziko in seveda na Agenciji za okolje je namenjen preračunavanju vremenskih napovedi. Vremensko dogajanje je znano po nepredvidljivosti, zato je predmet intenzivnih mednarodnih raziskav.

Za uspešno napoved je treba najprej poznati zakonitosti, ki uravnavajo dogajanje v ozračju. Potem je treba znati te zakonitosti tako napisati v obliki enačb, da rešitve povedo, kako se bodo temperatura, vlažnost zraka, zračni tlak, veter, oblačnost itn. v vsaki točki ozračja spreminjali s časom. Če to poznamo, poznamo tudi vrednosti vremenskih spremenljivk v vsaki točki ozračja za več dni vnaprej. Toda do tod je kar naporna in dolga pot.

Za začetek moramo vedeti, kakšne so razmere takrat, ko začnemo računanje. To ugotovimo z meritvami. Ker pa se vreme dogaja predvsem tam zgoraj, to pomeni, da moramo meriti po vsem ozračju okoli in okoli Zemlje, od tal pa do 20 ali 30 km nad njimi. Izmerjene podatke je treba tudi medsebojno uskladiti, saj so npr. vzrok za veter razlike zračnega tlaka med kraji: čim večje so, tem močnejši so vetrovi.

Po drugi strani pa vetrovi prenašajo zračne mase sem in tja; s tem se ponekod nakopiči več zraka, zato se zračni tlak poveča, drugod pa je zraka manj in je tlak nižji. In če se slučajno zgodi, da prostorska razporeditev zračnega tlaka in vetrov nista usklajeni, bodo pri računanju bodoče razporeditve vremenskih spremenljivk kaj hitro nastale napake – in s tem neuporabne napovedi.

Meritve je torej treba pametno izbrati in ovrednotiti in jim dodati tudi krajevne značilnosti, kot so npr. razgiban relief ali pa lastnosti tal.Končni rezultat računanja so napovedane razporeditve vremenskih spremenljivk po vsem ozračju za nekaj časa vnaprej – in to je za meteorologe že napoved vremena. Za druge – za splošno javnost − pa je treba vse to še preoblikovati v splošno razumljive opise vremena in dodati krajevne značilnosti – na primer, ob tako rekoč enakem splošnem vremenskem dogajanju nad Slovenijo je na sredozemski strani Alpsko-Dinarske gorske pregrade ena vrsta vremena, v osrednji Sloveniji druga, onkraj Trojan tretja in v Pomurju četrta. Take končno oblikovane napovedi si lahko vsakdo ogleda na internetnih straneh Agencije za okolje in fakultetne katedre za meteorologijo, povzetek pa slišimo in beremo v medijih.

Meteorologija pa ni le napovedovanje vremena. Slovenski meteorologi raziskujejo dinamiko ozračja na različnih skalah, modeliranje kakovosti zraka, širjenje onesnaževalcev v ozračju, analizo satelitskih meritev padavin in njihovo verifikacijo v modelih, asimilacijo atmosferskih podatkov in regionalno modeliranje klime. Meteorologija z geofiziko je tudi samostojni študij na fakulteti za matematiko in fiziko; o tem se bo marsikdo poučil na informativnih dnevih.

INTERVJU

Profesor dr. Jože Rakovec je vodja  katedre za meteorologijo na Fakulteti za matematiko in fiziko.

Zadnje dni se marsikje ogreje le do nekaj stopinj pod ničlo, ob tem pa je v Sloveniji veliko manj snega kot pri sosedih. Dihamo torej polarni zrak?

No, to, da je tako mraz, je odvisno od vremenskega dogajanja in v naših krajih v zmernih in visokih geografskih širinah o vremenu odločajo predvsem zračni tokovi. Seveda pa se moramo zavedati, da vreme nastaja tam gori − to pomeni recimo zračne tokove pet ali sedem kilometrov visoko, ki odločajo, kakšno bo vreme. No, sredi prejšnjega stoletja je Carl Gustaf Rossby ugotovil, da ta zračna reka teče okoli Zemlje; v zmernih in visokih geografskih širinah imamo pretežno zahodnike, ki pa pogosto močno valujejo proti severu ali proti jugu − tudi po 1000 do 2000 km proti severu oziroma proti jugu. Oblike tega meandriranja zračnega toka se iz dneva v dan spreminjajo in kadar prihaja k nam zrak iz mrzlih predelov, je seveda mraz. V tistih mrzlih predelih pa se mora zrak najprej shladiti in to se zgodi z negativno energetsko bilanco. Polarni predeli so pozimi bolj ali manj v temi − to pomeni, da dobivajo zelo malo sončne energije, medtem ko sama tla in ozračje, kot je ugotovil Jožef Stefan, sevajo v skladu s svojo temperaturo − sevajo noč in dan. In če ves čas oddajajo, tla in ozračje na teh predelih pa ne dobijo skoraj nič sonca, se zrak lahko zelo ohladi. Kadar začni meandri prinesejo v naše kraje ta mrzli zrak, imamo obdobje mrzlega vremena. To lahko traja precej dolgo. Rossby je nekako ugotovil, da se ti meandri pomikajo od zahoda proti vzhodu predvsem, če so stisnjeni, če pa so dolgi, se lahko premikajo celo v nasprotno smer, od vzhoda proti zahodu. Če so ravno prav dolgi − recimo, da je tak dvojni meander dolg približno 5500 km − pa se nikamor ne premaknejo in potem imamo lahko dva tedna tako rekoč enako vreme; ves čas na primer k nam od severa prihaja mrzel zrak.

Kako pa to, da je recimo v Splitu, v Dalmaciji, več snega kot v Ljubljani?

Treba je vedeti, kako padavine sploh nastajajo. Nastajajo takrat, kadar se zrak dviga − to je nujen pogoj za nastanek padavin. Ko je k nam tekel zrak od severa ali severovzhoda, je v resnici prihajal čez visoke Ture, čez vzhodni rob Alp, to pa pomeni, da se je nad Slovenijo spuščal. No, seveda se je spuščal tudi čez Velebit in Dinarsko gorstvo, ampak zavedati se je treba, da so Dinaridi visoki 1500 m, Alpe pa 3000. Torej je bilo spuščanje nad Slovenijo veliko izrazitejše kot recimo nad Splitom in zato so tam imeli padavine. Seveda je pomembno tudi to, kako vlažen je zrak, ki priteka. Ko se dviga, prihaja tja, kjer je nižji tlak, zato se prilagaja okoliškemu tlaku − to pomeni, da se razširja, prostornina se mu poveča in seveda mora pri širjenju odriniti zrak, ki je bil prej tam. Za odrivanje je treba opraviti delo. Vsako delo pa se plača. Plača ga iz zaloge svoje notranje energije, skratka, s tem, da se mu zniža temperatura. In ko se mu temperatura zniža, gre lahko pod rosišče, nastane kondenz, oblaki in potem ob ugodnih razmerah tudi padavine. Brez dviganja ni oblakov, ni padavin.

Vaši odgovori so rezultat računalniških fizikalnih napovedi in zapletenih enačb. Nekoč ste bili odvisni le od meritev z instrumenti, ki so bili privezani na balone. Zdaj pa so vremenske napovedi torej točnejše. Kako to?

No, v satelitski dobi se je količina podatkov izrazito povečala. Poglejte: nad Atlantikom in Pacifikom ni bilo nikogar, ki bi spuščal balone, oceani pa obsegajo 2/3 površine Zemlje − to pomeni, da smo bili brez podatkov za 2/3 ozračja. Z merjenjem iz satelitov pa dobivamo podatke tako z vrha ozračja kot s tal, recimo na vsakih 50 X 50 km − podatke o temperaturi, delno pa tudi o vetru in o vlažnosti − in tako precej dobro poznamo zdajšnje razmere. Potem to, kar dobimo z meritvami, kot začetne podatke vnesemo v računalniške prognostične meteorološke modele; modeli računajo, kaj se bo dogajalo, in tako dobimo razporeditev temperatur, vlažnost, zračni tlak in vetrove za danes, jutri in pojutrišnjem − tja do deset, morda največ 14 dni vnaprej. Potem postane vse skupaj premalo zanesljivo in takrat odnehamo.

Satelitske slike vidimo vsak večer pri poročilih, vendar bi le na podlagi slik oblakov bolj slabo napovedovali vreme. Lahko omenite kakšen zvitejši način, s katerim z opazovanjem iz vesolja tipate pulz našemu ozračju?

V tem je glavna stvar, bi se reklo. Izmeriti moramo potek temperature od tal do recimo 20, 30 km visoko, vlažnost od tal skozi ozračje do višine 20, 30 km in tako naprej. In kaj imamo na satelitih? Sprejemnike infrardečega in mikrovalovnega sevanja. In v skladu z znanim Stefanovim zakonom, da višja je temperatura, tem močneje stvari sevajo, lahko rečemo: aha, če sprejemnik dobi več energije sevanja, je temperatura višja. Ampak to je še premalo, saj ne vemo, iz katere višine prihaja ta informacija do radiometra na satelitu. No, tu pa imamo srečo, in sicer, da je sposobnost oddajanja tega, reciva, infrardečega sevanja nekoliko odvisna tudi od zračnega tlaka in hkrati za vsako valovno dolžino malo drugačna − to pomeni: če imamo recimo 15-kanalni radiometer, je v prvem kanalu sevanje, ki izhaja predvsem iz najbolj spodnje plasti ozračja, v drugem kanalu je iz malo višje plasti ozračja, v tretjem še iz višje in tako naprej. No, vse to ni tako zelo dobro definirano, da bi iz tega, kar nam 15-kanalni radiometer pove, lahko nedvoumno in brez težav neposredno izračunali potek temperature, recimo z višino. Z malo prebrisanimi metodami, bi lahko rekel, pa se da iz radiometričnih podatkov vendarle dobiti podatke o poteku temperature glede na višino in podobno o poteku vlažnosti zraka z višino. Za zdaj je malo slabše glede vetrov, za to na satelitih še nimamo zelo veliko instrumentov, vendar jih bomo imeli kmalu.

Vremenska napoved je zanesljiva le za 10 do 14 dni vnaprej. Kaj jo lahko uniči?

Dogajanje v ozračju je nelinearno in tako imenovano nelinearno dogajanje je v nekaterih primerih močno odvisno od majhnih fluktuacij v teh začetnih razmerah, ki jih dobimo z merjenjem. Lahko se zgodi, da se recimo začetna simulacija razvoja vremena iz začetnih razmer zdaj že zelo hitro razlikuje od simulacije samo malce drugačnih začetnih razmer − v takem primeru rečemo, da je dogajanje zelo nelinearno, občutljivo za drobne napake. In v teh primerih seveda kolegi prognostiki, ki napovedujejo vreme, niso zelo pogumni v svojih izjavah. Kako to izvemo? V resnici ne naredimo ene same računalniške prognoze, ampak 50. In kadar se vseh 50 skoraj čisto nič ne razlikuje med seboj, to pomeni: aha, tokrat razvoj vremena ni bil zelo občutljiv za drobne napake, napoved je zanesljiva. Takrat se seveda kolegi na TV izprsijo in hrabro povedo, da bo do konca tedna tako in tako. Kadar pa se posamezne prognoze med seboj kar precej razlikujejo, so previdnejši in rečejo “utegne biti” ali “bomo še videli” ali kaj takega. To je stvar nelinearnosti narave in tukaj imamo konceptualno, načelno omejitev glede napovedljivosti vremena, zato ne boste nikoli našli meteorologa, ki bi vam bil pripravljen reči: čez tri tedne bo tako in tako vreme. Vreme sorazmerno hitro pozablja svojo zgodovino − tem hitreje, čim bolj je dogajanje nelinearno.

Lahko ob koncu dodate kakšen nasvet za mladega človeka, ki ga zanima, kako razumeti vreme?

Tisti, ki imajo veselje, ki jim matematično-fizikalni način obravnave problemov ni tuj in ki so pripravljeni tudi zagrabiti za delo, bodo moji mlajši kolegi.

Mija Škrabec Arbanas, Tomaž Zwitter